ChatGPT is a large language model trained by OpenAI. In this technical report, we explore for the first time the capability of ChatGPT for programming numerical algorithms. Specifically, we examine the capability of GhatGPT for generating codes for numerical algorithms in different programming languages, for debugging and improving written codes by users, for completing missed parts of numerical codes, rewriting available codes in other programming languages, and for parallelizing serial codes. Additionally, we assess if ChatGPT can recognize if given codes are written by humans or machines. To reach this goal, we consider a variety of mathematical problems such as the Poisson equation, the diffusion equation, the incompressible Navier-Stokes equations, compressible inviscid flow, eigenvalue problems, solving linear systems of equations, storing sparse matrices, etc. Furthermore, we exemplify scientific machine learning such as physics-informed neural networks and convolutional neural networks with applications to computational physics. Through these examples, we investigate the successes, failures, and challenges of ChatGPT. Examples of failures are producing singular matrices, operations on arrays with incompatible sizes, programming interruption for relatively long codes, etc. Our outcomes suggest that ChatGPT can successfully program numerical algorithms in different programming languages, but certain limitations and challenges exist that require further improvement of this machine learning model.
翻译:ChatGPT 是由 OpenAI 训练的大型语言模型。在本技术报告中,我们首次探讨了 ChatGPT 在编写数值算法方面的能力。具体来说,我们考察了 GhatGPT 在不同编程语言中生成数值算法代码的能力,可以调试和改进用户编写的代码,在缺失的数值代码部分完成编写,将可用代码重写为其他编程语言,并对串行代码进行并行化处理。此外,我们评估 ChatGPT 是否能够识别用户输入的代码是人工编写的还是机器生成的。为了达到这个目标,我们考虑了各种数学问题,例如泊松方程、扩散方程、不可压Navier-Stokes方程、可压缩无粘性流动、特征值问题、解线性方程组、存储稀疏矩阵等等。此外,我们通过物理学中的科学机器学习示例,如基于物理的神经网络和卷积神经网络,探讨了 ChatGPT 的成功、失败和挑战。失败案例比如生成奇异矩阵、操作大小不兼容的数组,为相对较长的代码导致编程中断等等。我们的研究成果表明,ChatGPT 可以成功的用于编写不同编程语言的数值算法,但仍然存在一些局限和挑战,需要进一步改进这个机器学习模型。