The familiar second derivative test for convexity is shown to yield a useful tool also in the context of matrix-valued functions. We demonstrate its applicability on a number of theorems in this field. These include convexity principles which play an essential role in the Lieb-Ruskai proof of the strong subadditivity of quantum entropy.
翻译:已知的第二次精密衍生物测试显示,在矩阵估价功能方面,也产生了一个有用的工具。我们证明它适用于这一领域的一些理论,其中包括在Lieb-Ruskai证明量子性强的子相交性方面起重要作用的精细原则。