We study the expressibility and learnability of convex optimization solution functions and their multi-layer architectural extension. The main results are: \emph{(1)} the class of solution functions of linear programming (LP) and quadratic programming (QP) is a universal approximant for the $C^k$ smooth model class or some restricted Sobolev space, and we characterize the rate-distortion, \emph{(2)} the approximation power is investigated through a viewpoint of regression error, where information about the target function is provided in terms of data observations, \emph{(3)} compositionality in the form of a deep architecture with optimization as a layer is shown to reconstruct some basic functions used in numerical analysis without error, which implies that \emph{(4)} a substantial reduction in rate-distortion can be achieved with a universal network architecture, and \emph{(5)} we discuss the statistical bounds of empirical covering numbers for LP/QP, as well as a generic optimization problem (possibly nonconvex) by exploiting tame geometry. Our results provide the \emph{first rigorous analysis of the approximation and learning-theoretic properties of solution functions} with implications for algorithmic design and performance guarantees.
翻译:我们研究convex优化解决方案功能及其多层建筑扩展的可理解性和可学习性。主要结果如下:\emph{(1)}线性编程(LP)和二次编程(QP)的解决方案功能类别是美元平滑模型类或某些限制的Sobolev空间的通用近似值,我们用回归错误的角度来分析速率扭曲,通过回归错误的角度提供关于目标功能的信息,以数据观测的形式提供关于目标功能的信息, \emph{(3)}以优化为层的深层结构的形式显示构成性,以重建数字分析中使用的一些基本功能,无误,这意味着:\emph{(4)}率扭曲可以通过一个通用网络结构实现大幅下降,和\emph{{(5)}我们讨论经验覆盖LP/QP数字的统计界限,以及通过利用 tame几何测量法提供一般的优化问题(可能不是convex)。我们的结果提供了对数据精确度和设计分析的精确性分析。我们的成果提供了解决方案的精确度和精确性分析。