We introduce a new weight and corresponding metric over finite extension fields for asymmetric error correction. The weight distinguishes between elements from the base field and the ones outside of it, which is motivated by asymmetric quantum codes. We set up the theoretic framework for this weight and metric, including upper and lower bounds, asymptotic behavior of random codes, and we show the existence of an optimal family of codes achieving the Singleton-type upper bound.
翻译:我们为非对称误差校正引入了新的权重和相应的衡量尺度以超过限定的扩展字段。 权重区分了基场的元素和基场外的元素,后者是由非对称量子代码驱动的。 我们为此权重和度建立了理论框架,包括上下限,随机代码的无反应行为,我们显示了一个达到单质型代码上限的最佳代码组合的存在。