Graph representation learning has been widely studied and demonstrated effectiveness in various graph tasks. Most existing works embed graph data in the Euclidean space, while recent works extend the embedding models to hyperbolic or spherical spaces to achieve better performance on graphs with complex structures, such as hierarchical or ring structures. Fusing the embedding from different manifolds can further take advantage of the embedding capabilities over different graph structures. However, existing embedding fusion methods mostly focus on concatenating or summing up the output embeddings, without considering interacting and aligning the embeddings of the same vertices on different manifolds, which can lead to distortion and impression in the final fusion results. Besides, it is also challenging to fuse the embeddings of the same vertices from different coordinate systems. In face of these challenges, we propose the Fused Manifold Graph Neural Network (FMGNN), a novel GNN architecture that embeds graphs into different Riemannian manifolds with interaction and alignment among these manifolds during training and fuses the vertex embeddings through the distances on different manifolds between vertices and selected landmarks, geometric coresets. Our experiments demonstrate that FMGNN yields superior performance over strong baselines on the benchmarks of node classification and link prediction tasks.


翻译:图表示学习已广泛研究并且证明在各种图任务中有效。大多数现有工作将图形数据嵌入到欧几里德空间中,而最近的工作将嵌入模型扩展到超球面或球面空间,以在具有复杂结构的图形上获得更好的性能,例如分层或环形结构。融合来自不同流形的嵌入可以进一步利用不同图结构中的嵌入能力。然而,现有的嵌入融合方法大多集中在串联或汇总输出嵌入,而没有考虑不同流形上相同顶点的嵌入之间的交互和对齐,这可能会导致最终融合结果的扭曲和印象。此外,还具有挑战性的是,融合来自不同坐标系的相同顶点的嵌入。面对这些挑战,我们提出了融合流形图神经网络(FMGNN),这是一种新颖的GNN架构,它将图嵌入到不同的Riemannian 流形中,在训练过程中在这些流形之间进行交互和对齐,并通过顶点之间在不同流形上的距离和选择的地标点(即几何核心集)来融合顶点嵌入。我们的实验表明,FMGNN相对于强基线在节点分类和链接预测任务的基准测试中产生了卓越的性能。

0
下载
关闭预览

相关内容

近期必读的8篇 AAAI 2020【图神经网络(GNN)】相关论文
专知会员服务
77+阅读 · 2020年1月15日
必读的7篇IJCAI 2019【图神经网络(GNN)】相关论文-Part2
专知会员服务
61+阅读 · 2020年1月10日
六篇 CIKM 2019 必读的【图神经网络(GNN)】长文论文
专知会员服务
38+阅读 · 2019年11月3日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
一文带你浏览Graph Transformers
PaperWeekly
1+阅读 · 2022年7月8日
一文读懂图卷积GCN
计算机视觉life
21+阅读 · 2019年12月21日
【NeurIPS2019】图变换网络:Graph Transformer Network
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
19+阅读 · 2021年2月4日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
10+阅读 · 2020年6月12日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
一文带你浏览Graph Transformers
PaperWeekly
1+阅读 · 2022年7月8日
一文读懂图卷积GCN
计算机视觉life
21+阅读 · 2019年12月21日
【NeurIPS2019】图变换网络:Graph Transformer Network
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
19+阅读 · 2021年2月4日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
10+阅读 · 2020年6月12日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员