With quantum computing technologies nearing the era of commercialization and quantum supremacy, machine learning (ML) appears as one of the promising "killer" applications. Despite significant effort, there has been a disconnect between most quantum ML proposals, the needs of ML practitioners, and the capabilities of near-term quantum devices to demonstrate quantum enhancement in the near future. In this contribution to the focus collection on "What would you do with 1000 qubits?", we provide concrete examples of intractable ML tasks that could be enhanced with near-term devices. We argue that to reach this target, the focus should be on areas where ML researchers are struggling, such as generative models in unsupervised and semi-supervised learning, instead of the popular and more tractable supervised learning techniques. We also highlight the case of classical datasets with potential quantum-like statistical correlations where quantum models could be more suitable. We focus on hybrid quantum-classical approaches and illustrate some of the key challenges we foresee for near-term implementations. Finally, we introduce the quantum-assisted Helmholtz machine (QAHM), an attempt to use near-term quantum devices to tackle high-dimensional datasets of continuous variables. Instead of using quantum computers to assist deep learning, as previous approaches do, the QAHM uses deep learning to extract a low-dimensional binary representation of data, suitable for relatively small quantum processors which can assist the training of an unsupervised generative model. Although we illustrate this concept on a quantum annealer, other quantum platforms could benefit as well from this hybrid quantum-classical framework.


翻译:随着量子计算技术接近商业化和量子至上时代,机器学习(ML)似乎是一个充满希望的“杀手”应用。尽管做出了重大努力,但大多数量子ML提案、ML从业人员的需求以及近期量子装置在近期展示量子增强能力的能力之间存在脱节。在对“你用1000夸比特做什么?”这一重点收集的贡献中,我们提供了“你用1000夸比特做什么?”的复杂量子计算任务的具体例子,这些任务可以通过近期装置予以加强。我们争辩说,要达到这一目标,重点应该是ML研究人员正在挣扎的领域,例如非超额和半超额学习的基因模型,而不是流行的和较易级监督的学习技术。我们还着重指出了古典数据集的例子,它们可能具有量子类的统计相关性,而量子模型更适合量子模型。我们为近期执行而预见到的一些关键挑战。最后,我们引入了量子辅助Helmhotz机器(QAHAM),试图使用近期的基因模型模型的基因模型模型模型, 而不是超级和半超级的半超级的基因级模型,试图使用近级的基因级模型的基因级模型的模型, 来学习一个高级的量级的量级的量子级数据模型,用来研究, 用来研究,用来研究,用来研究一个近级的模型,用来研究, 用来研究一个高级的高级的高级数据级的高级的模型,用来研究,用来研究,用来研究一个高级的高级的高级的量子级数据学的精确的模型,用来研究,用来研究,用来研究,用来研究一个高级的高级的基数子子子子子子子系的模型, 来研究,用来研究,用来研究, 来研究一个可以用来研究,用来研究一个用来研究一个高级的高级的量子系的高级的高级的量子系的模型,用来研究,用来研究,用来研究,用来研究,用来研究。

0
下载
关闭预览

相关内容

【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
24+阅读 · 2019年11月24日
Arxiv
3+阅读 · 2018年10月11日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员