In this paper, we investigate Gaussian process modeling with input location error, where the inputs are corrupted by noise. Here, the best linear unbiased predictor for two cases is considered, according to whether there is noise at the target unobserved location or not. We show that the mean squared prediction error converges to a non-zero constant if there is noise at the target unobserved location, and provide an upper bound of the mean squared prediction error if there is no noise at the target unobserved location. We investigate the use of stochastic Kriging in the prediction of Gaussian processes with input location error, and show that stochastic Kriging is a good approximation when the sample size is large. Several numeric examples are given to illustrate the results, and a case study on the assembly of composite parts is presented. Technical proofs are provided in the Appendix.
翻译:在本文中, 我们用输入位置错误来调查Gaussian过程, 输入点被噪音破坏。 这里, 根据目标未观测地点是否有噪音, 考虑两种情况下的最佳线性无偏向预测器。 我们显示, 平均正方预测错误在目标未观测地点有噪音时会与非零常数相交, 并且如果目标未观测地点没有噪音, 则提供平均方形预测错误的上限。 我们调查在预测高斯进程时使用随机克里吉和输入位置错误时, 并显示在样本大小较大时, 随机克里吉是一个很好的近似值。 我们给出了几个数字例子来说明结果, 并介绍了关于合成部件组装的案例研究。 附录中提供了技术证据 。