Error-in-variables regression is a common ingredient in treatment effect estimators using panel data. This includes synthetic control estimators, counterfactual time series forecasting estimators, and combinations. We study high-dimensional least squares with correlated error-in-variables with a focus on these uses. We use our results to derive conditions under which the synthetic control estimator is asymptotically unbiased and normal with estimable variance, permitting inference without assuming time-stationarity, unit-exchangeability, or the absence of weak factors. These results hold in an asymptotic regime in which the number of pre-treatment periods goes to infinity and the number of control units can be much larger $(p \gg n)$.
翻译:使用面板数据的治疗效果估计器中常见的成份是误差的回归,其中包括合成控制测算器、反事实时间序列预测测算器和组合。我们研究与相关误差相关的高维最小方形,重点是这些用途。我们利用我们的结果得出合成控制测算器在条件下是非现位的,正常的,且有可估量的差异,允许推断,而不必假定时间静止性、单位易交换性或缺乏薄弱因素。这些结果存在于一个无药可治的制度中,在这种制度中,预处理期的数量会达到无限,控制单位的数量会大得多(p\gg n美元)。