Assessing the technical efficiency of a set of observations requires that the associated data composed of inputs and outputs are perfectly known. If this is not the case, then biased estimates will likely be obtained. Data Envelopment Analysis (DEA) is one of the most extensively used mathematical models to estimate efficiency. It constructs a piecewise linear frontier against which all observations are compared. Since the frontier is empirically defined, any deviation resulting from low data quality (imperfect knowledge of data or IKD) may lead to efficiency under/overestimation. In this study, we model IKD and, then, apply the so-called Hit \& Run procedure to randomly generate admissible observations, following some prespecified probability density functions. Sets used to model IKD limit the domain of data associated with each observation. Any point belonging to that domain is a candidate to figure out as the observation for efficiency assessment. Hence, this sampling procedure must run a sizable number of times (infinite, in theory) in such a way that it populates the whole sets. The DEA technique is used during the execution of each iteration to estimate bootstrapped efficiency scores for each observation. We use some scenarios to show that the proposed routine can outperform some of the available alternatives. We also explain how efficiency estimations can be used for statistical inference. An empirical case study based on the Portuguese public hospitals database (2013-2016) was addressed using the proposed method.


翻译:评估一组观测的技术效率要求完全了解由投入和产出组成的相关数据。如果不是这样,则有可能获得偏差的估计数。数据内容分析(DEA)是用来估计效率的最广泛使用的数学模型之一。它构建了一个可以比较所有观测的平面线边框。由于边界是经验界定的,低数据质量(数据或IKD的不完善知识)造成的任何偏差都可能导致效率低/高估。在本研究中,我们模拟IKD,然后采用所谓的“点击运行”程序随机生成可接受观测,遵循某些预设的概率密度功能。用于模型IKD限制与每项观测相关的数据域的设置。属于该域的任何点都可以作为效率评估的观察对象。因此,这种取样程序必须运行相当多的时间(在理论上上是无限的),这样可以容纳整个数据集。在每次研究中应用一些“点击 运行” 程序随机生成可允许的观测结果。我们还可以使用一些方法来估算每种观测的常规估测算方法。我们还可以使用一些用于估算各种观测的统计方法。我们还可以使用一些拟议的估测方法。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
51+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Distribution-Dependent Analysis of Meta-Learning
Arxiv
0+阅读 · 2021年6月11日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年4月2日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关VIP内容
专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
51+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员