The combination of the Reduced Basis and the Empirical Interpolation Method (EIM) approaches have produced outstanding results in many disciplines. In particular, in gravitational wave (GW) science these results range from building non-intrusive surrogate models for GWs to fast parameter estimation adding the use of Reduced Order Quadratures. These surrogates have the salient feature of being essentially indistinguishable from or very close to supercomputer simulations of the Einstein equations, but can be evaluated in the order of a milisecond per multipole mode on a standard laptop. In this article we clarify a common misperception of the EIM as originally introduced and used in practice in GW science. Namely, we prove that the EIM at each iteration chooses the interpolation nodes so as to make the related Vandermonde-type matrix as invertible as possible; not necessarily optimizing its conditioning or accuracy of the interpolant as is sometimes thought. In fact, we introduce two new variations of the EIM, nested as well, which do optimize with respect to conditioning and the Lebesgue constant, respectively, and compare them through numerical experiments with the original EIM using GWs. Our analyses and numerical results suggest a subtle relationship between solving for the original EIM, conditioning, and the Lebesgue constant, in consonance with active research in rigorous approximation theory and related fields.


翻译:降级基准方法与经验性内插方法(EIM)相结合的方法在许多学科中产生了突出的结果。特别是在引力波科学中,这些结果从为GW科学建立非侵入性代用模型到快速参数估计加使用减序二次曲线的快速参数估计。这些代用方法的显著特征是基本上无法与爱因斯坦方程式的超级计算机模拟相区别,或与爱因斯坦方程式的超级计算机模拟非常接近,但可以按照标准笔记本电脑上每多极模式的偏差顺序来评估。在本篇文章中,我们澄清了最初在GW科学中采用和实践中对EIM的常见误解。也就是说,我们证明,每个迭代的EIM选择了间调,使相关的Vandermonde型矩阵变得不可视而不见;不一定像人们有时想象的那样,优化其调节或精确度,但可以按照标准膝上型笔电脑上每多极模式的偏差顺序来评估。在EIM中,我们澄清了对EIM的常见的误解。我们最初在GIM和LEIM的精确度分析中,分别通过不断的精确的模型和精确度分析,显示我们之间的精确度关系,在原始的精确度上和精确度上与我们之间的对比中,分别对数值和精确的精确比。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员