Body actions and head gestures are natural interfaces for interaction in virtual environments. Existing methods for in-place body action recognition often require hardware more than a head-mounted display (HMD), making body action interfaces difficult to be introduced to ordinary virtual reality (VR) users as they usually only possess an HMD. In addition, there lacks a unified solution to recognize in-place body actions and head gestures. This potentially hinders the exploration of the use of in-place body actions and head gestures for novel interaction experiences in virtual environments. We present a unified two-stream 1-D convolutional neural network (CNN) for recognition of body actions when a user performs walking-in-place (WIP) and for recognition of head gestures when a user stands still wearing only an HMD. Compared to previous approaches, our method does not require specialized hardware and/or additional tracking devices other than an HMD and can recognize a significantly larger number of body actions and head gestures than other existing methods. In total, ten in-place body actions and eight head gestures can be recognized with the proposed method, which makes this method a readily available body action interface (head gestures included) for interaction with virtual environments. We demonstrate one utility of the interface through a virtual locomotion task. Results show that the present body action interface is reliable in detecting body actions for the VR locomotion task but is physically demanding compared to a touch controller interface. The present body action interface is promising for new VR experiences and applications, especially for VR fitness applications where workouts are intended.


翻译:人体动作和头部手势是虚拟环境中互动的天然界面。 现有机构内动作识别方法通常要求硬件多于头部显示器( HMD), 这使得普通虚拟现实用户难以引入身体动作界面, 因为他们通常只拥有 HMD 。 此外, 缺乏统一的解决方案来识别内部身体动作和头部手势。 这有可能会妨碍探索在虚拟环境中使用机构内动作和头部手势的新互动经验。 我们展示了一个统一的二流 1 - D convolual 神经网络( CNN), 以识别用户在行进式应用程序( WIP) 时的身体动作, 而当用户仍然只使用 HMD 时, 也难以向普通虚拟现实现实用户介绍身体界面( VMD ) 。 与以前的方法相比, 我们的方法并不需要专门硬件和/ 或头部手势手势动作比其他现有方法要多得多得多。 总共10个机构内动作和8个头手势手势( ) 与拟议的方法可以识别身体动作( WIP) 将这个工具界面显示一个随时可用的实物界面。 我们的手势动作动作显示一个组织内动作的动作, 行动界面, 显示一个可以显示一个动态界面。</s>

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员