We present a randomized algorithm for solving low-degree polynomial equation systems over finite fields faster than exhaustive search. In order to do so, we follow a line of work by Lokshtanov, Paturi, Tamaki, Williams, and Yu (SODA 2017), Bj\"orklund, Kaski, and Williams (ICALP 2019), and Dinur (SODA 2021). In particular, we generalize Dinur's algorithm for $\mathbb{F}_2$ to all finite fields, in particular the "symbolic interpolation" of Bj\"orklund, Kaski, and Williams, and we use an efficient trimmed multipoint evaluation and interpolation procedure for multivariate polynomials over finite fields by Van der Hoeven and Schost (AAECC 2013). The running time of our algorithm matches that of Dinur's algorithm for $\mathbb{F}_2$ and is significantly faster than the one of Lokshtanov et al. for $q>2$. We complement our results with tight conditional lower bounds that, surprisingly, we were not able to find in the literature. In particular, under the strong exponential time hypothesis, we prove that it is impossible to solve $n$-variate low-degree polynomial equation systems over $\mathbb{F}_q$ in time $O((q-\varepsilon)^{n})$. As a bonus, we show that under the counting version of the strong exponential time hypothesis, it is impossible to compute the number of roots of a single $n$-variate low-degree polynomial over $\mathbb{F}_q$ in time ${O((q-\varepsilon)^{n})}$; this generalizes a result of Williams (SOSA 2018) from $\mathbb{F}_2$ to all finite fields.


翻译:暂无翻译

0
下载
关闭预览

相关内容

本专题讨论会主要讨论离散问题之有效演算法与资料结构。除了这些方法和结构的设计,还包括它们的使用、性能分析以及与它们的发展或局限性相关的数学问题。性能分析可以是分析性的,也可以是实验性的,可以是针对最坏情况或预期情况的性能。研究可以是理论性的,也可以是基于实践中出现的数据集,可以解决绩效分析中涉及的方法学问题。官网链接:https://www.siam.org/conferences/cm/conference/soda20
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
144+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月21日
Arxiv
0+阅读 · 11月20日
Arxiv
16+阅读 · 2022年11月21日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 11月21日
Arxiv
0+阅读 · 11月20日
Arxiv
16+阅读 · 2022年11月21日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
27+阅读 · 2017年12月6日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员