New malware emerges at a rapid pace and often incorporates Domain Generation Algorithms (DGAs) to avoid blocking the malware's connection to the command and control (C2) server. Current state-of-the-art classifiers are able to separate benign from malicious domains (binary classification) and attribute them with high probability to the DGAs that generated them (multiclass classification). While binary classifiers can label domains of yet unknown DGAs as malicious, multiclass classifiers can only assign domains to DGAs that are known at the time of training, limiting the ability to uncover new malware families. In this work, we perform a comprehensive study on the detection of new DGAs, which includes an evaluation of 59,690 classifiers. We examine four different approaches in 15 different configurations and propose a simple yet effective approach based on the combination of a softmax classifier and regular expressions (regexes) to detect multiple unknown DGAs with high probability. At the same time, our approach retains state-of-the-art classification performance for known DGAs. Our evaluation is based on a leave-one-group-out cross-validation with a total of 94 DGA families. By using the maximum number of known DGAs, our evaluation scenario is particularly difficult and close to the real world. All of the approaches examined are privacy-preserving, since they operate without context and exclusively on a single domain to be classified. We round up our study with a thorough discussion of class-incremental learning strategies that can adapt an existing classifier to newly discovered classes.


翻译:新恶意软件以快速的速度出现,并且往往包含 Domain DGA Alogorithms (DGAs), 以避免阻止恶意软件与指挥和控制服务器(C2) 的连接。 目前最先进的分类方法能够将良性与恶意域( 双级分类) 分离, 并将其高度概率归属生成的 DGA 组合( 多级分类 ) 。 虽然二进制分类方法可以将未知的DGA 域标为恶意、 多级分类方法, 只能将已知的培训时已知的DGA 域指定为DGA 域, 从而限制发现新恶意软件家庭的能力。 在这项工作中, 我们进行关于发现新DGA 的高级分类方法的全面研究, 其中包括对59 690 个分类器进行评估。 我们用15种不同的配置来检查四种不同的方法, 并提议一个简单而有效的方法, 以软式的摩擦分类器和常规表达方式( regexes) 组合, 来检测多个未知的 DGAA 。 同时, 我们的方法可以保留已知DGA 的全局的全局的全局的全局 和全局的跨级的跨级评估方法。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月18日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员