We present a new FPTAS for the Subset Sum Ratio problem, which, given a set of integers, asks for two disjoint subsets such that the ratio of their sums is as close to $1$ as possible. Our scheme makes use of exact and approximate algorithms for the closely related Partition problem, hence any progress over those -- such as the recent improvement due to Bringmann and Nakos [SODA 2021] -- carries over to our FPTAS. Depending on the relationship between the size of the input set $n$ and the error margin $\varepsilon$, we improve upon the best currently known algorithm of Melissinos and Pagourtzis [COCOON 2018] of complexity $O(n^4 / \varepsilon)$. In particular, the exponent of $n$ in our proposed scheme may decrease down to $2$, depending on the Partition algorithm used. Furthermore, while the aforementioned state of the art complexity, expressed in the form $O((n + 1 / \varepsilon)^c)$, has constant $c = 5$, our results establish that $c < 5$.
翻译:我们为子定总比率问题提出了一个新的FPTAS,根据一组整数,我们要求两个脱节子集,这样它们的总和比率尽可能接近1美元。我们的计划对密切相关的分区问题采用了精确和大致的算法,因此,在这些方面的任何进展 -- -- 例如最近由于Bringmann和Nakos[SODO 2021]而带来的改善 -- -- 都传给了我们的FPTAS。根据设定的美元投入规模和差价差值美元之间的关系,我们改进了目前已知的Melissinos和Pagourtzis[COON 的复杂($4 /\ varepsilon)美元[COON 的最佳算法。特别是,我们拟议办法中的美元出价可能下降至2美元,这取决于使用的分区算法。此外,根据以美元(n)+1/varepslon美元(c)表示的上述复杂程度,我们以美元为不变的美元=5美元。