Existing studies on salient object detection (SOD) focus on extracting distinct objects with edge information and aggregating multi-level features to improve SOD performance. To achieve satisfactory performance, the methods employ refined edge information and low multi-level discrepancy. However, both performance gain and computational efficiency cannot be attained, which has motivated us to study the inefficiencies in existing encoder-decoder structures to avoid this trade-off. We propose TRACER, which detects salient objects with explicit edges by incorporating attention guided tracing modules. We employ a masked edge attention module at the end of the first encoder using a fast Fourier transform to propagate the refined edge information to the downstream feature extraction. In the multi-level aggregation phase, the union attention module identifies the complementary channel and important spatial information. To improve the decoder performance and computational efficiency, we minimize the decoder block usage with object attention module. This module extracts undetected objects and edge information from refined channels and spatial representations. Subsequently, we propose an adaptive pixel intensity loss function to deal with the relatively important pixels unlike conventional loss functions which treat all pixels equally. A comparison with 13 existing methods reveals that TRACER achieves state-of-the-art performance on five benchmark datasets. In particular, TRACER-Efficient3 (TE3) outperforms LDF, an existing method while requiring 1.8x fewer learning parameters and less time; TE3 is 5x faster.


翻译:关于突出对象探测的现有研究(SOD)侧重于提取有边缘信息的不同对象,并汇集多层次特征,以提高SOD的性能。为了取得令人满意的业绩,这些方法采用精细的边缘信息和低多层次差异。但是,业绩增益和计算效率都无法实现,这促使我们研究现有的编码器脱co器结构中的低效率,以避免这种权衡。我们提议TRACER,它通过纳入引人注意的跟踪模块来探测明显边缘的突出对象。我们在第一个编码器的末尾使用一个遮蔽的边缘注意模块,使用快速的Fourier变换将精细的边缘信息传播到下游特性提取。在多层次汇总阶段,工会注意模块确定了补充渠道和重要的空间信息。为了提高脱coder-decoder结构的效能和计算效率,我们尽可能减少与目标注意模块的脱coder区块使用。这个模块从精细的频道和空间表示中提取未探测到的物体和边缘信息。随后,我们提议采用适应性像强度损失功能,处理相对重要的平方位的平方位数,不同于常规损失功能,后者处理所有TRE-TRA3的学习要求,后者同等地处理所有TRA-TRAC-TRA-TRA-TRAxxxxxxxxxxxxxxxxx的成绩要求,现有方法比较,现有方法则显示现有方法比较13的比较,现有方法比较,现有的方法是较低的比较,现有方法,现有方法是比较13号TRAC-TRAC-TRAL-TRAL-TRAL-Lx-Lx-x-xx-x-x-x-Lx-Lxx-x-Lx-Lx-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-xx-x-x-x-x-x-xxxx-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【CVPR2021】多实例主动学习目标检测
专知会员服务
43+阅读 · 2021年4月18日
专知会员服务
110+阅读 · 2020年3月12日
ECCV 2020 目标跟踪论文大盘点
极市平台
7+阅读 · 2020年10月4日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
8+阅读 · 2018年10月31日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
Arxiv
13+阅读 · 2019年4月9日
Arxiv
3+阅读 · 2018年3月5日
VIP会员
相关资讯
ECCV 2020 目标跟踪论文大盘点
极市平台
7+阅读 · 2020年10月4日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
8+阅读 · 2018年10月31日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
Top
微信扫码咨询专知VIP会员