We develop the first fast spectral algorithm to decompose a random third-order tensor over $\mathbb{R}^d$ of rank up to $O(d^{3/2}/\text{polylog}(d))$. Our algorithm only involves simple linear algebra operations and can recover all components in time $O(d^{6.05})$ under the current matrix multiplication time. Prior to this work, comparable guarantees could only be achieved via sum-of-squares [Ma, Shi, Steurer 2016]. In contrast, fast algorithms [Hopkins, Schramm, Shi, Steurer 2016] could only decompose tensors of rank at most $O(d^{4/3}/\text{polylog}(d))$. Our algorithmic result rests on two key ingredients. A clean lifting of the third-order tensor to a sixth-order tensor, which can be expressed in the language of tensor networks. A careful decomposition of the tensor network into a sequence of rectangular matrix multiplications, which allows us to have a fast implementation of the algorithm.
翻译:我们开发了第一个快速光谱算法, 来分解在$( d ⁇ 3/2}/\ text{polylog}(d) $(d) 美元之上的随机第三阶高压。 我们的算法只涉及简单的线性代数操作, 并且可以在目前的矩阵乘法乘以时间范围内及时回收所有部件 $( d ⁇ 6.05}) 美元。 在这项工作之前, 只能通过平方之和[ Ma, Shi, Steurer 2016] 来实现类似的保证。 相比之下, 快速算法[ Hopkins, Schramm, Shi, Steurer 2016] 只能将最高值为$( d ⁇ 4/3}/\ text{polylog}(d) $解析。 我们的算法结果取决于两个关键要素。 第三阶高压至六阶高压的清洁提升, 可以用沙尔网络的语言表示。 谨慎解析, 将高压网络分成一系列的矩形矩阵, 使我们得以快速执行算法 。