The Alberta Infant Motor Scale (AIMS) is a well-known assessment scheme that evaluates the gross motor development of infants by recording the number of specific poses achieved. With the aid of the image-based pose recognition model, the AIMS evaluation procedure can be shortened and automated, providing early diagnosis or indicator of potential developmental disorder. Due to limited public infant-related datasets, many works use the SMIL-based method to generate synthetic infant images for training. However, this domain mismatch between real and synthetic training samples often leads to performance degradation during inference. In this paper, we present a CNN-based model which takes any infant image as input and predicts the coarse and fine-level pose labels. The model consists of an image branch and a pose branch, which respectively generates the coarse-level logits facilitated by the unsupervised domain adaptation and the 3D keypoints using the HRNet with SMPLify optimization. Then the outputs of these branches will be sent into the hierarchical pose recognition module to estimate the fine-level pose labels. We also collect and label a new AIMS dataset, which contains 750 real and 4000 synthetic infants images with AIMS pose labels. Our experimental results show that the proposed method can significantly align the distribution of synthetic and real-world datasets, thus achieving accurate performance on fine-grained infant pose recognition.


翻译:艾伯塔省婴儿机动车规模(AIMS)是一个众所周知的评估计划,通过记录特定成份的数量来评估婴儿运动的毛运动发育。借助基于图像的表面识别模型,AIMS评估程序可以缩短和自动化,提供早期诊断或潜在发育紊乱的指标。由于与婴儿有关的公共数据集有限,许多作品使用基于SMIL的合成婴儿图像来生成培训用合成婴儿图像。然而,真实和合成培训样本之间的这一域错配往往导致在推论期间性能退化。本文中,我们提出了一个基于CNN的模型,将任何婴儿图像作为投入并预测粗糙和精细的表面标签。该模型包括一个图像分支和一个外形分支,分别产生粗糙水平的登录点,由未加控制的域适应所促进,以及使用带有SMPLify优化的HRNet的3D关键点来生成。然后,这些分支的产出将发送到等级化的图像识别模块中,以估计精细的形状标签。我们还收集并标贴一个新的AIMS数据集,其中含有750个真实的和4000个精细的面标签。这个模型,分别由图像组成一个图像组成,分别产生粗化的模型,从而显示我们模拟的合成婴儿的合成图像的合成图像的精确的模型,可以显示我们的模型。

0
下载
关闭预览

相关内容

专知会员服务
30+阅读 · 2021年6月12日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Motion Gait: Gait Recognition via Motion Excitation
Arxiv
0+阅读 · 2022年6月22日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员