Click-based learning to rank (LTR) tackles the mismatch between click frequencies on items and their actual relevance. The approach of previous work has been to assume a model of click behavior and to subsequently introduce a method for unbiasedly estimating preferences under that assumed model. The success of this approach is evident in that unbiased methods have been found for an increasing number of behavior models and types of bias. This work aims to uncover the implicit limitations of the high-level prevalent approach in the counterfactual LTR field. Thus, in contrast with limitations that follow from explicit assumptions, our aim is to recognize limitations that the field is currently unaware of. We do this by inverting the existing approach: we start by capturing existing methods in generic terms, and subsequently, from these generic descriptions we derive the click behavior for which these methods can be unbiased. Our inverted approach reveals that there are indeed implicit limitations to the counterfactual LTR approach: we find counterfactual estimation can only produce unbiased methods for click behavior based on affine transformations. In addition, we also recognize previously undiscussed limitations of click-modelling and pairwise approaches to click-based LTR. Our findings reveal that it is impossible for existing approaches to provide unbiasedness guarantees for all plausible click behavior models.
翻译:以点击为基础的排名学习( LTR) 解决了项目点击频率及其实际相关性之间的不匹配问题。 先前的工作方针是假设点击行为模式,并随后引入一种在假设模式下不偏袒地估计偏好的方法。 这种方法的成功表现在为越来越多的行为模式和偏见类型找到不带偏见的方法上。 这项工作旨在揭示反事实LTR领域高流行方法的隐含局限性。 因此,与明确假设的限制相比,我们的目标是承认实地目前所不知道的局限性。 我们这样做的方式是颠倒现有方法:我们首先从一般术语获取现有方法,然后从这些通用描述出发,我们从这些通用描述中获取这些方法可以不带偏见的点击方法。 我们的反向方法表明,反事实LTR方法确实存在隐含的局限性。 我们发现,反事实估计只能产生公正的方法,根据离子变形变形法点击行为。 此外,我们还认识到,我们以前从未讨论过点击模拟和对基于点击的LTR的所有风险行为模式进行对比性分析的局限性。 我们的研究结果显示,目前无法对以可信的行为模式提供可信的保证。