Imitation learning enables high-fidelity, vision-based learning of policies within rich, photorealistic environments. However, such techniques often rely on traditional discrete-time neural models and face difficulties in generalizing to domain shifts by failing to account for the causal relationships between the agent and the environment. In this paper, we propose a theoretical and experimental framework for learning causal representations using continuous-time neural networks, specifically over their discrete-time counterparts. We evaluate our method in the context of visual-control learning of drones over a series of complex tasks, ranging from short- and long-term navigation, to chasing static and dynamic objects through photorealistic environments. Our results demonstrate that causal continuous-time deep models can perform robust navigation tasks, where advanced recurrent models fail. These models learn complex causal control representations directly from raw visual inputs and scale to solve a variety of tasks using imitation learning.
翻译:光学学习有助于在富饶的光现实环境中对政策进行高度忠诚、基于愿景的学习,然而,这种技术往往依赖传统的离散时神经模型,由于未能说明代理人与环境之间的因果关系,难以向领域转移,无法说明代理人与环境之间的因果关系。在本文中,我们提出了一个理论和实验框架,用于利用连续时间神经网络,特别是其离散时对应方的神经网络,来学习因果关系。我们从从短期和长期导航到通过光现实环境追逐静态和动态物体的一系列复杂任务,从视觉控制学习无人机到通过模拟现实环境追击静态和动态物体的一系列复杂任务,评估我们的方法。我们的结果表明,因果连续的深层模型可以执行稳健的导航任务,在高级经常模式失败的情况下。这些模型从原始的视觉投入和规模直接学习复杂的因果关系控制说明,以便利用模拟学习解决各种任务。