In an instrumental variable model, the score statistic can be bounded for any alternative in parts of the parameter space. These regions involve a constraint on the first-stage regression coefficients and the reduced-form covariance matrix. Consequently, the Lagrange Multiplier test can have power close to size, despite being efficient under standard asymptotics. This information loss limits the power of conditional tests which use only the Anderson-Rubin and the score statistic. The conditional quasi-likelihood ratio test also suffers severe losses because it can be bounded for any alternative. A necessary condition for drastic power loss to occur is that the Hermitian of the reduced-form covariance matrix has eigenvalues of opposite signs. These cases are denoted impossibility designs (ID). We show this happens in practice, by applying our theory to the problem of inference on the intertemporal elasticity of substitution (IES). Of eleven countries studied by Yogo (2004} and Andrews (2016), nine are consistent with ID at the 95\% level.
翻译:在一种工具变量模型中,分数统计可以与参数空间的某些部分中的任何替代物相连接。 这些区域会限制第一阶段的回归系数和减形共变矩阵。 因此, lagrange 倍增效应测试的功率接近体积, 尽管在标准的无序状态下是有效的。 这种信息丢失限制了只使用Anderson-Rubin和分数统计的有条件测试的功率。 有条件的准相似比率测试也因可选择任何替代物而蒙受严重损失。 发生重大功率损失的一个必要条件是, 变形变异矩阵的Hermitian 具有相反迹象的隐性值。 这些是无法设计( ID) 。 我们通过应用我们的理论来解释替代的时空弹性的推断问题( INES ), 在实践中我们展示了这种情况。 在Yogo (2004年) 和 Andrews (2016年) 所研究的11个国家中, 9个与95年的ID一致。