This paper investigates regex CQs with string equalities (SERCQs), a subclass of core spanners. As shown by Freydenberger, Kimelfeld, and Peterfreund (PODS 2018), these queries are intractable, even if restricted to acyclic queries. This previous result defines acyclicity by treating regex formulas as atoms. In contrast to this, we propose an alternative definition by converting SERCQs into FC-CQs -- conjunctive queries in FC, a logic that is based on word equations. We introduce a way to decompose word equations of unbounded arity into a conjunction of binary word equations. If the result of the decomposition is acyclic, then evaluation and enumeration of results become tractable. The main result of this work is an algorithm that decides in polynomial time whether an FC-CQ can be decomposed into an acyclic FC-CQ. We also give an efficient conversion from synchronized SERCQs to FC-CQs with regular constraints. As a consequence, tractability results for acyclic relational CQs directly translate to a large class of SERCQs.
翻译:本文用弦等同( SERCQs) 来调查字符串 CQ 。 如 Freydenberger、 Kimelfeld 和 Peterfreund (PODS 2018) 所显示的, 这些查询是难以解决的, 即使仅限于周期性查询 。 先前的这一结果通过将 Regex 公式作为原子处理来定义周期性。 与此相反, 我们提出一个替代定义, 将 SECQs 转换成 FC- CQs -- -- 一种基于字等式的逻辑。 我们引入了一种方法, 将无约束性字等式的字方程式分解为二元等式的组合。 如果分解的结果是周期性的, 那么结果的评估和查点就会变得可动。 这项工作的主要结果是一种算法, 它将决定 FC- CQ Q 能否解析成一个周期性 FC- CQ 。 我们还将一个同步的 SECQ 到 FC- CQs 和常规的 Cralal 关系 。