High-resolution (HR) images are usually downscaled to low-resolution (LR) ones for better display and afterward upscaled back to the original size to recover details. Recent work in image rescaling formulates downscaling and upscaling as a unified task and learns a bijective mapping between HR and LR via invertible networks. However, in real-world applications (e.g., social media), most images are compressed for transmission. Lossy compression will lead to irreversible information loss on LR images, hence damaging the inverse upscaling procedure and degrading the reconstruction accuracy. In this paper, we propose the Self-Asymmetric Invertible Network (SAIN) for compression-aware image rescaling. To tackle the distribution shift, we first develop an end-to-end asymmetric framework with two separate bijective mappings for high-quality and compressed LR images, respectively. Then, based on empirical analysis of this framework, we model the distribution of the lost information (including downscaling and compression) using isotropic Gaussian mixtures and propose the Enhanced Invertible Block to derive high-quality/compressed LR images in one forward pass. Besides, we design a set of losses to regularize the learned LR images and enhance the invertibility. Extensive experiments demonstrate the consistent improvements of SAIN across various image rescaling datasets in terms of both quantitative and qualitative evaluation under standard image compression formats (i.e., JPEG and WebP).
翻译:高分辨率(HR) 图像通常被降为低分辨率(LR) 图像, 以便更好地显示, 并在后提升到原来的大小, 恢复细节。 图像调整最近的工作将降幅和升幅作为统一的任务, 并学习HR和LR之间的双向映射。 然而, 在现实世界应用程序( 如社交媒体) 中, 大多数图像被压缩供传输。 失缩将导致LR图像信息不可逆转地丢失, 从而破坏升级程序, 并降低重建的准确性。 在本文件中, 我们提议为压缩- 觉醒图像调整而建立自对称不可逆网络(SAIN) 。 为了应对分布变化, 我们首先开发一个端对端对端的图像映射双向图像。 然后, 根据对这个框架的实验分析, 我们模拟丢失的信息( 包括降幅和压缩) 格式的分布, 从而降低重建的准确性调值 。 我们提议在SVIRC 的升级的图像设计中, 升级的升级到升级的图像的升级到升级的升级的图像的升级到升级。</s>