The recently introduced graphical continuous Lyapunov models provide a new approach to statistical modeling of correlated multivariate data. The models view each observation as a one-time cross-sectional snapshot of a multivariate dynamic process in equilibrium. The covariance matrix for the data is obtained by solving a continuous Lyapunov equation that is parametrized by the drift matrix of the dynamic process. In this context, different statistical models postulate different sparsity patterns in the drift matrix, and it becomes a crucial problem to clarify whether a given sparsity assumption allows one to uniquely recover the drift matrix parameters from the covariance matrix of the data. We study this identifiability problem by representing sparsity patterns by directed graphs. Our main result proves that the drift matrix is globally identifiable if and only if the graph for the sparsity pattern is simple (i.e., does not contain directed two-cycles). Moreover, we present a necessary condition for generic identifiability and provide a computational classification of small graphs with up to 5 nodes.
翻译:最近引入的图形连续的 Lyapunov 模型为相关多变量数据的统计建模提供了一种新的方法。 模型将每种观测视为平衡中多变量动态过程的一次性跨部门截图。 数据的共变量矩阵是通过解决一个连续的 Lyapunov 方程式获得的, 该方程式被动态过程的漂移矩阵所分化。 在这方面, 不同的统计模型假设了漂移矩阵中不同的宽度模式, 并成为一个关键问题, 要澄清给定的宽度假设是否允许一个人从数据的共变量矩阵中单独恢复漂移矩阵参数。 我们通过定向图形来代表宽度模式来研究这一可识别性问题。 我们的主要结果证明, 漂移矩阵如果并且只有空间模式的图是简单的( 即, 不包含定向的双周期), 我们为通用的可识别性提供了一种必要条件, 并提供最多5个节点的小图表的计算分类 。