We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal while avoiding obstacles in uncertain environments. First, we use stochastic model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints. Second, recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution, which are trained on uncertainty outputs of various simultaneous localization and mapping algorithms. When two or more robots are in communication range, these uncertainties are then updated using a distributed Kalman filtering approach. Lastly, a Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal. Our complete methods are demonstrated on a ground and aerial robot simultaneously (code available at: https://github.com/AlexS28/SABER).
翻译:我们提出了一个端到端在线动议规划框架,它使用数据驱动的方法引导一个多式机器人团队走向一个全球目标,同时避免在不确定环境中的障碍。 首先,我们使用随机模型预测控制(SMPC)来计算满足机器人动态的控件输入,并在避免障碍时考虑不确定性和机会限制。 其次,经常的神经网络用来提供对SMPC中考虑的未来状态不确定性的快速估计,SMPC的定时视距解决方案对各种同步本地化和绘图算法的不确定性产出进行了培训。 当两个或两个以上的机器人处于通信范围时,这些不确定性会使用分布式的卡尔曼过滤法进行更新。 最后,使用深Q学习代理器作为高级路径规划器,为SMPC提供目标位置,将机器人推进到预期的全球目标。我们的完整方法会同时在地面和空中机器人上演示(代码见:https://github.com/AlexS28/SABER )。