In this work, we present a novel protocol class for secure three-party computation with an honest majority. We refer this protocol class as Oblivious Error Correction (OEC). For each multiplication gate, our replicated OEC protocol requires only two domain elements of global communication in the online phase and one element of communication in the offline phase. Also, only parties P2 and P3 are involved in the online phase. This makes our protocols especially interesting for cases where P1 can only communicate to the other parties with high latency. In both protocol's online phases a multiplication gate requires only 3 local multiplications in total. Our protocols are simulation-based secure in the presence of semi-honest adversaries, and achieve privacy but not correctness in the presence of malicious adversaries. Both presented protocols support the client-server model and work for both arithmetic and boolean circuits. Our duplicated OEC protocol can achieve circuit privacy against one or two of the computation nodes if the parties also communicate for every addition gate. The former property may be interesting to achieve a two-input-party computation where P3 only acts as an auxiliary party with no input and should not learn the computed function. The latter property may be interesting to let P2 and/or P3 supply private inputs to a confidential application logic of P1.
翻译:在这项工作中,我们提出了一个新颖的协议类别,用于安全地进行三方计算,并有一个诚实多数。我们把这个协议类别称为“隐蔽错误校正 ” (OEC) 。对于每个倍增门,我们复制的 OEC 协议只要求在线阶段全球通信的两个领域元素和离线阶段的一个通信要素。此外,只有P2和P3 当事方参与了在线阶段。这使得我们的协议对于P1 只能与其他高度延缓的当事方进行通信的案例中特别有趣。在两个协议的在线阶段,一个倍增门总共只需要三个本地倍增。我们的协议是在半诚实对手面前进行模拟的安全,在恶意对手面前实现隐私,但不正确。这两个协议都支持客户-服务器模型和计算和布林电路的工作。我们重复的 OEC 协议可以实现一个或两个计算节点的电路隐私权,如果双方也为每个额外门进行通信的话。在P3 之前的财产可能有兴趣实现两部的计算。在P3 仅作为辅助方的输入方,而不能在恶意对手面前进行保密的逻辑应用。