Combinatorial Game Theory typically studies sequential rulesets with perfect information where two players alternate moves. There are rulesets with {\em entailing moves} that break the alternating play axiom and/or restrict the other player's options within the disjunctive sum components. Although some examples have been analyzed in the classical work Winning Ways, such rulesets usually fall outside the scope of the established normal play mathematical theory. At the first Combinatorial Games Workshop at MSRI, John H. Conway proposed that an effort should be made to devise some nontrivial ruleset with entailing moves that had a complete analysis. Recently, Larsson, Nowakowski, and Santos proposed a more general theory, {\em affine impartial}, which facilitates the mathematical analysis of impartial rulesets with entailing moves. Here, by using this theory, we present a complete solution for a nontrivial ruleset with entailing moves.
翻译:组合游戏理论通常研究具有完美信息的顺序规则集,其中两名玩家交替行动。存在着带有蕴含移动的规则集,这些规则集破坏交替玩法公理和/或在非括号和组合中限制其他玩家的选择。虽然经典作品《赢棋的方法》中已经分析了一些例子,但这些规则集通常超出了已建立的正常玩法数学理论的范围。在MSRI的第一次组合游戏研讨会上,约翰·H·康威提出了一项工作,即我们应该尽力设计一些具有完整分析的带有蕴含移动的非平凡规则集。最近,拉尔森,诺瓦科夫斯基和桑托斯提出了一种更一般的理论——「仿射公正」,便于分析带有蕴含移动的公正规则集。在这里,我们利用此理论,针对带有蕴含移动的非平凡规则集提供了一个完整的解决方案。