Reliably assessing the error in an estimated vehicle position is integral for ensuring the vehicle's safety in urban environments. Many existing approaches use GNSS measurements to characterize protection levels (PLs) as probabilistic upper bounds on the position error. However, GNSS signals might be reflected or blocked in urban environments, and thus additional sensor modalities need to be considered to determine PLs. In this paper, we propose a novel approach for computing PLs by matching camera image measurements to a LiDAR-based 3D map of the environment. We specify a Gaussian mixture model probability distribution of position error using deep neural network-based data-driven models and statistical outlier weighting techniques. From the probability distribution, we compute the PLs by evaluating the position error bound using numerical line-search methods. Through experimental validation with real-world data, we demonstrate that the PLs computed from our method are reliable bounds on the position error in urban environments.
翻译:对车辆估计位置错误进行可靠评估对于确保车辆在城市环境中的安全至关重要。许多现有方法使用全球导航卫星系统测量方法将保护级别(PL)定性为位置误差的概率上限。然而,在城市环境中,全球导航卫星系统信号可能会被反射或堵塞,因此需要考虑额外的传感器模式来确定PLs。在本文件中,我们提出一种新的计算PLs的方法,将相机图像测量与基于LIDAR的3D环境地图相匹配。我们用深神经网络数据驱动模型和统计外加权重技术指定了高斯混合定位差概率模型。从概率分布中,我们通过使用数字线搜索方法对定位错误进行评估,计算PLs。通过对现实世界数据的实验验证,我们证明从我们的方法计算出来的PLs是城市环境中定位错误的可靠界限。