报告主题:用户隐私,数据孤岛和联邦学习 报告摘要:随着人工智能(AI)的广泛应用,AI系统所面临的大数据挑战也日益凸显。一方面,AI系统的成功离不开大数据,另一方面,社会对于用户隐私的泄露也越来越不能容忍。最近,欧洲推出了严厉的个人数据隐私法案,而部门和机构之间的隔阂也使得部门墙成为数据孤岛间难以逾越的障碍。面对这一严峻挑战,我们提出“联邦迁移学习",用以建立机构间的桥梁,使得不同数据控制方可以参与联合建立AI模型,并协作使用模型来进行决策。各方数据不出本地,而用户隐私得到最好保护。我将举例描述联邦迁移学习这一技术的几个功能,包括数据确权定价,利益合理分配,安全联合建模。

嘉宾简介:杨强,微众银行首席人工智能官,曾担任香港科技大学计算机与工程系讲座教授和系主任,前华为诺亚方舟实验室主任,第四范式公司联合创始人,AAAI执委,国际人工智能联合会IJCAI理事会主席,香港人工智能与机器人学会理事长,ACM TIST 和IEEE TRANS on BIG DATA创始主编,AAAI, ACM,IEEE,AAAS等多个国际学会的Fellow。

成为VIP会员查看完整内容
用户隐私,数据孤岛和联邦学习 杨强.pdf
53

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
165+阅读 · 2020年4月26日
【中国人民大学】机器学习的隐私保护研究综述
专知会员服务
131+阅读 · 2020年3月25日
【CCL 2019】2019信息检索趋势,山东大学教授任昭春博士
专知会员服务
29+阅读 · 2019年11月12日
联邦学习最新研究趋势!
AI科技评论
52+阅读 · 2020年3月12日
破解数据孤岛壁垒,三篇论文详细解读联邦学习
AI科技评论
24+阅读 · 2019年5月7日
联邦学习或将助力IoT走出“数据孤岛”?
中国计算机学会
20+阅读 · 2019年3月16日
“联邦学习”实现“共同富裕”?来TF“共同富裕”!
中国计算机学会
5+阅读 · 2019年3月12日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Arxiv
12+阅读 · 2019年2月28日
Arxiv
5+阅读 · 2017年4月12日
VIP会员
相关VIP内容
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
165+阅读 · 2020年4月26日
【中国人民大学】机器学习的隐私保护研究综述
专知会员服务
131+阅读 · 2020年3月25日
【CCL 2019】2019信息检索趋势,山东大学教授任昭春博士
专知会员服务
29+阅读 · 2019年11月12日
相关资讯
微信扫码咨询专知VIP会员