In this paper, we argue that modern pre-integration methods for inertial measurement units (IMUs) are accurate enough to ignore the drift for short time intervals. This allows us to consider a simplified camera model, which in turn admits further intrinsic calibration. We develop the first-ever solver to jointly solve the relative pose problem with unknown and equal focal length and radial distortion profile while utilizing the IMU data. Furthermore, we show significant speed-up compared to state-of-the-art algorithms, with small or negligible loss in accuracy for partially calibrated setups. The proposed algorithms are tested on both synthetic and real data, where the latter is focused on navigation using unmanned aerial vehicles (UAVs). We evaluate the proposed solvers on different commercially available low-cost UAVs, and demonstrate that the novel assumption on IMU drift is feasible in real-life applications. The extended intrinsic auto-calibration enables us to use distorted input images, making tedious calibration processes obsolete, compared to current state-of-the-art methods.
翻译:在本文中,我们争论说,对于惯性测量单位(IMUs)的现代整合前方法足够准确,足以在短时间间隔内忽略漂移。这使我们能够考虑一个简化的相机模型,这反过来又承认了进一步的内在校准。我们开发了第一个解答器,在使用IMU数据的同时,用未知和相同的焦距和辐射扭曲剖面共同解决相对构成的问题。此外,我们展示了与最先进的算法相比的巨大加速,部分校准装置的精确度小于或微不足道的损失。拟议的算法在合成和真实数据上都进行了测试,而后者侧重于使用无人驾驶飞行器(UAVs)进行导航。我们评估了不同商业上可用的低成本UAVs的拟议解答器,并表明对IMU漂移的新假设在现实生活中是可行的。扩展的内在自动校准使我们能够使用扭曲的输入图像,使乏味校准过程与目前的最新方法相比过时。