Data Science aims to extract meaningful knowledge from unorganised data. Real datasets usually come in the form of a cloud of points with only pairwise distances. Numerous applications require to visualise an overall shape of a noisy cloud of points sampled from a non-linear object that is more complicated than a union of disjoint clusters. The skeletonisation problem in its hardest form is to find a 1-dimensional skeleton that correctly represents a shape of the cloud. This paper compares several algorithms that solve the above skeletonisation problem for any point cloud and guarantee a successful reconstruction. For example, given a highly noisy point sample of an unknown underlying graph, a reconstructed skeleton should be geometrically close and homotopy equivalent to (has the same number of independent cycles as) the underlying graph. One of these algorithm produces a Homologically Persistent Skeleton (HoPeS) for any cloud without extra parameters. This universal skeleton contains sub-graphs that provably represent the 1-dimensional shape of the cloud at any scale. Other subgraphs of HoPeS reconstruct an unknown graph from its noisy point sample with a correct homotopy type and within a small offset of the sample. The extensive experiments on synthetic and real data reveal for the first time the maximum level of noise that allows successful graph reconstructions.


翻译:数据科学旨在从无组织的数据中获取有意义的知识。 真实的数据集通常以云层形式出现, 其间距离只有对齐。 许多应用都要求将非线性物体取样的热点云层的总体形状直观化为从非线性物体中采集的热点云层,这种云层比不相交的星团要复杂得多。 最难的骨质化问题是找到一个能正确代表云层形状的一维骨架。 本文比较了用来解决任何点云层的上述骨质化问题的几种算法, 并保证一个成功的重建。 例如, 在一个未知的底图的极热点样本中, 重建后的骨骼应该是地理上接近和同质等同的。 其中一种算法为任何没有额外参数的云层生成一个具有逻辑性的单向常态Skeleton (Hopees) 。 这个通用的骨质结构包含一些子图, 可以代表任何规模的云层的一维度形状。 其它的子图像组将一个未知的图形从一个不为精确的点点样本中重建, 以正确的同质类型和在一个小的图层中, 能够对真实的图像进行广泛的实验。

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年4月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
(Python)3D人脸处理工具Face3d
AI研习社
7+阅读 · 2019年2月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2021年4月8日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
(Python)3D人脸处理工具Face3d
AI研习社
7+阅读 · 2019年2月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员