In this paper, we propose a novel edge and corner detection algorithm for an unorganized point cloud. Our edge detection method classifies a query point as an edge point by evaluating the distribution of local neighboring points around the query point. The proposed technique has been tested on generic items such as dragons, bunnies, and coffee cups from the Stanford 3D scanning repository. The proposed technique can be directly applied to real and unprocessed point cloud data of random clutter of objects. To demonstrate the proposed technique's efficacy, we compare it to the other solutions for 3D edge extractions in an unorganized point cloud data. We observed that the proposed method could handle the raw and noisy data with little variations in parameters compared to other methods. We also extend the algorithm to estimate the 6D pose of known objects in the presence of dense clutter while handling multiple instances of the object. The overall approach is tested for a warehouse application, where an actual UR5 robot manipulator is used for robotic pick and place operations in an autonomous mode.
翻译:在本文中, 我们为无组织点云提出了一个全新的边缘和角检测算法。 我们的边缘检测方法将一个查询点分类为一个边缘点, 通过评估查询点周围当地相邻点的分布。 拟议的技术已经在斯坦福 3D 扫描库的龙、 兔子和咖啡杯等通用项目上进行了测试。 拟议的技术可以直接应用到随机天花板的真实和未处理的点云数据中。 为了显示拟议技术的功效, 我们比较它与其他3D 边缘提取方法在无组织点云数据中的解决方案。 我们观察到, 拟议的方法可以处理原始和噪音数据, 参数与其他方法相比变化不大。 我们还扩展了算法, 以估计已知物体的 6D 形状, 并同时处理该天花样的多个实例。 总体方法可以测试仓库应用程序, 在那里, 实际的 UR5 机器人操纵器用于机器人的提取和自动操作 。