We present a robust data-driven control scheme for an unknown linear system model with bounded process and measurement noise. Instead of depending on a system model in traditional predictive control, a controller utilizing data-driven reachable regions is proposed. The data-driven reachable regions are based on a matrix zonotope recursion and are computed based on only noisy input-output data of a trajectory of the system. We assume that measurement and process noise are contained in bounded sets. While we assume knowledge of these bounds, no knowledge about the statistical properties of the noise is assumed. In the noise-free case, we prove that the presented purely data-driven control scheme results in an equivalent closed-loop behavior to a nominal model predictive control scheme. In the case of measurement and process noise, our proposed scheme guarantees robust constraint satisfaction, which is essential in safety-critical applications. Numerical experiments show the effectiveness of the proposed data-driven controller in comparison to model-based control schemes.
翻译:我们提出了一个可靠的数据驱动控制计划,用于一个具有封闭过程和测量噪音的未知线性系统模型。我们提出的不是依赖传统预测控制系统模型的系统模型,而是使用数据驱动可达区域。数据驱动的可达区域是基于一个矩阵的zoonotope循环,并且仅根据系统轨迹的噪音输入输出数据进行计算。我们假设测量和过程噪音包含在捆绑的数据集中。虽然我们假定了解这些界限,但并不假定对噪音的统计特性有任何了解。在无噪音的案例中,我们证明提出的纯数据驱动控制计划的结果是,对一个名义模型的预测控制计划而言,是一种相当的闭路行为。在测量和过程噪音方面,我们提议的计划保证强力约束性满意度,这对于安全关键应用至关重要。数字实验表明,与基于模型的控制计划相比,拟议的数据驱动控制器的有效性。