We introduce a hyperreduced reduced basis element method for model reduction of parameterized, component-based systems in continuum mechanics governed by nonlinear partial differential equations. In the offline phase, the method constructs, through a component-wise empirical training, a library of archetype components defined by a component-wise reduced basis and hyperreduced quadrature rules with varying hyperreduction fidelities. In the online phase, the method applies an online adaptive scheme informed by the Brezzi-Rappaz-Raviart theorem to select an appropriate hyperreduction fidelity for each component to meet the user-prescribed error tolerance at the system level. The method accommodates the rapid construction of hyperreduced models for large-scale component-based nonlinear systems and enables model reduction of problems with many continuous and topology-varying parameters. The efficacy of the method is demonstrated on a two-dimensional nonlinear thermal fin system that comprises up to 225 components and 68 independent parameters.
翻译:暂无翻译