Representing the spatial properties of facial attributes is a vital challenge for facial attribute recognition (FAR). Recent advances have achieved the reliable performances for FAR, benefiting from the description of spatial properties via extra prior information. However, the extra prior information might not be always available, resulting in the restricted application scenario of the prior-based methods. Meanwhile, the spatial ambiguity of facial attributes caused by inherent spatial diversities of facial parts is ignored. To address these issues, we propose a prior-free method for attribute spatial decomposition (ASD), mitigating the spatial ambiguity of facial attributes without any extra prior information. Specifically, assignment-embedding module (AEM) is proposed to enable the procedure of ASD, which consists of two operations: attribute-to-location assignment and location-to-attribute embedding. The attribute-to-location assignment first decomposes the feature map based on latent factors, assigning the magnitude of attribute components on each spatial location. Then, the assigned attribute components from all locations to represent the global-level attribute embeddings. Furthermore, correlation matrix minimization (CMM) is introduced to enlarge the discriminability of attribute embeddings. Experimental results demonstrate the superiority of ASD compared with state-of-the-art prior-based methods, while the reliable performance of ASD for the case of limited training data is further validated.
翻译:面部属性的空间属性是面部属性识别的重大挑战。最近的进展已经实现了FAR的可靠性能,这得益于通过额外的先前信息对空间属性的描述。然而,以往的额外信息可能并非总能获得,导致基于先前方法的应用设想有限。与此同时,由于面部部分固有的空间多样性造成的面部属性的空间模糊性被忽略了。为了解决这些问题,我们提议了一种事先不使用的方法,用于属性空间分解(ASD),在不增加任何先前信息的情况下减轻面部属性的空间模糊性。具体地说,派任组合模块(AEM)是为了启用ASD程序,该程序由两种操作组成:属性到地点的指定和位置到归属的嵌入式。属性到定位的配置首先根据潜在因素将特征图拆分,确定每个空间位置的属性组成部分的大小。然后,从所有地点分配的属性组成部分代表全球级别的属性嵌入。此外,相关矩阵最小化(CMM)是为了扩大基于属性的嵌入式模块的兼容性,该模块包括两个操作程序:属性到定位的定位分配到位置的定位定位定位定位的定位定位的定位,而实验性强度比对ASDA-SD的精确性前测试结果的精确性测试是进一步展示的优势。