Recent progress of deep learning has empowered various intelligent transportation applications, especially in car-sharing platforms. While the traditional operations of the car-sharing service highly relied on human engagements in fleet management, modern car-sharing platforms let users upload car images before and after their use to inspect the cars without a physical visit. To automate the aforementioned inspection task, prior approaches utilized deep neural networks. They commonly employed pre-training, a de-facto technique to establish an effective model under the limited number of labeled datasets. As candidate practitioners who deal with car images would presumably get suffered from the lack of a labeled dataset, we analyzed a sophisticated analogy into the effectiveness of pre-training is important. However, prior studies primarily shed a little spotlight on the effectiveness of pre-training. Motivated by the aforementioned lack of analysis, our study proposes a series of analyses to unveil the effectiveness of various pre-training methods in image recognition tasks at the car-sharing platform. We set two real-world image recognition tasks in the car-sharing platform in a live service, established them under the many-shot and few-shot problem settings, and scrutinized which pre-training method accomplishes the most effective performance in which setting. Furthermore, we analyzed how does the pre-training and fine-tuning convey different knowledge to the neural networks for a precise understanding.


翻译:深度学习的最新进展赋予了各种智能交通应用,特别是在汽车共享平台上。虽然汽车共享服务的传统运营高度依赖于人力参与的车队管理,但现代汽车共享平台允许用户在使用前和使用后上传汽车图像以在无需实地访问的情况下进行检查。为了自动化上述检查任务,之前的方法利用了深度神经网络。他们通常采用预训练,这是一种在有限的标记数据集下建立有效模型的事实技术。由于处理汽车图像的候选从业者很可能遭受标记数据集的缺乏,我们分析了预训练有效性的复杂类比是重要的。然而,之前的研究主要没有深入研究预训练的有效性。受到上述缺乏分析的启发,我们的研究提出了一系列分析,以揭示各种预训练方法在汽车共享平台上的图像识别任务中的有效性。我们在真实的生活服务中设置了两个汽车共享平台上的实际图像识别任务,将它们建立在多样本和少样本问题设置下,并仔细研究哪种预训练方法在哪种设置中实现了最有效的性能。此外,我们分析了预训练和微调如何传递不同的知识给神经网络,以便准确理解。

0
下载
关闭预览

相关内容

Uber AI NeurIPS 2019《元学习meta-learning》教程,附92页PPT下载
专知会员服务
112+阅读 · 2019年12月13日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
打开模型Zero-Shot新范式:Instruction Tuning
PaperWeekly
2+阅读 · 2022年8月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2023年6月16日
Arxiv
0+阅读 · 2023年6月14日
VIP会员
相关资讯
打开模型Zero-Shot新范式:Instruction Tuning
PaperWeekly
2+阅读 · 2022年8月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员