Numerical reasoning over hybrid data containing both textual and tabular content (e.g., financial reports) has recently attracted much attention in the NLP community. However, existing question answering (QA) benchmarks over hybrid data only include a single flat table in each document and thus lack examples of multi-step numerical reasoning across multiple hierarchical tables. To facilitate data analytical progress, we construct a new large-scale benchmark, MultiHiertt, with QA pairs over Multi Hierarchical Tabular and Textual data. MultiHiertt is built from a wealth of financial reports and has the following unique characteristics: 1) each document contain multiple tables and longer unstructured texts; 2) most of tables contained are hierarchical; 3) the reasoning process required for each question is more complex and challenging than existing benchmarks; and 4) fine-grained annotations of reasoning processes and supporting facts are provided to reveal complex numerical reasoning. We further introduce a novel QA model termed MT2Net, which first applies facts retrieving to extract relevant supporting facts from both tables and text and then uses a reasoning module to perform symbolic reasoning over retrieved facts. We conduct comprehensive experiments on various baselines. The experimental results show that MultiHiertt presents a strong challenge for existing baselines whose results lag far behind the performance of human experts. The dataset and code are publicly available at https://github.com/psunlpgroup/MultiHiertt.
翻译:包含文本和表格内容的混合数据(如财务报告)的数值推理最近引起全国劳工计划界的极大关注。然而,现有对混合数据的问题回答(QA)基准仅包括每份文件中的单平表,因此缺乏多等级表格中多步数字推理的例子。为了便利数据分析进展,我们用多等级表和文本数据对齐的新的大规模基准(多希特),用多等级表和文本数据对齐的QA模型。多希特是根据大量财务报告建立的,具有以下独特的特点:1)每份文件包含多个表格和较长的无结构文本;2大多数表格是等级的;3)每个问题所需的推理过程比现有基准更为复杂和具有挑战性;4)对推理过程和支持事实的细微说明提供了复杂的数字推理。我们进一步引入了一个新的QA模型,称为MT2Net,首先从表格和文本中提取相关事实,然后使用推理模块,对已检索的事实进行符号推理。我们在各种基线上进行了非常复杂的多层次的模拟实验,在各种数据基线上展示了现有数据结果。