Solving the so-called geodesic endpoint problem, i.e., finding a geodesic that connects two given points on a manifold, is at the basis of virtually all data processing operations, including averaging, clustering, interpolation and optimization. On the Stiefel manifold of orthonormal frames, this problem is computationally involved. A remedy is to use quasi-geodesics as a replacement for the Riemannian geodesics. Quasi-geodesics feature constant speed and covariant acceleration with constant (but possibly non-zero) norm. For a well-known type of quasi-geodesics, we derive a new representation that is suited for large-scale computations. Moreover, we introduce a new kind of quasi-geodesics that turns out to be much closer to the Riemannian geodesics.


翻译:解决所谓的大地学终点问题,即找到连接一个方块上两个给点的大地学,是几乎所有数据处理作业的基础,包括平均、集聚、内插和优化。在正方形框架的Stiefel 方块上,这个问题在计算上涉及。一种补救措施是使用准地球学来替代里格曼的大地学。 准地球学以恒定速度和共变加速为恒定( 但可能非零)标准。 对于一种众所周知的准地球学,我们产生一种新的代表,适合大规模计算。此外,我们引入了一种新的准地球学,结果与里格曼的大地学非常接近。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月8日
Arxiv
0+阅读 · 2021年7月7日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员