Our main contribution is a polynomial-time algorithm to reduce a $k$-colorable gammoid to a $(2k-2)$-colorable partition matroid. It is known that there are gammoids that can not be reduced to any $(2k-3)$-colorable partition matroid, so this result is tight. We then discuss how such a reduction can be used to obtain polynomial-time algorithms with better approximation ratios for various natural problems related to coloring and list coloring the intersection of matroids.
翻译:我们的主要贡献是使用多元时间算法,将一K$-彩色的包件减为(2k-2)$-彩色的分割型机器人,已知有不能减为(2k-3)$-彩色分割型机器人的包件,因此这个结果很紧。然后我们讨论如何利用这种减法获得具有更好的近似率的多元时间算法,处理与彩色和列出杂交的杂交有关的各种自然问题。