In the era of rapidly advancing medical technologies, the segmentation of medical data has become inevitable, necessitating the development of privacy preserving machine learning algorithms that can train on distributed data. Consolidating sensitive medical data is not always an option particularly due to the stringent privacy regulations imposed by the Health Insurance Portability and Accountability Act (HIPAA). In this paper, we introduce a HIPAA compliant framework that can train from distributed data. We then propose a multimodal vertical federated model for Alzheimer's Disease (AD) detection, a serious neurodegenerative condition that can cause dementia, severely impairing brain function and hindering simple tasks, especially without preventative care. This vertical federated model offers a distributed architecture that enables collaborative learning across diverse sources of medical data while respecting privacy constraints imposed by HIPAA. It is also able to leverage multiple modalities of data, enhancing the robustness and accuracy of AD detection. Our proposed model not only contributes to the advancement of federated learning techniques but also holds promise for overcoming the hurdles posed by data segmentation in medical research. By using vertical federated learning, this research strives to provide a framework that enables healthcare institutions to harness the collective intelligence embedded in their distributed datasets without compromising patient privacy.
翻译:暂无翻译