A quantity of interest to characterise continuous-valued stochastic processes is the differential entropy rate. The rate of convergence of many properties of LRD processes is slower than might be expected, based on the intuition for conventional processes, e.g. Markov processes. Is this also true of the entropy rate? In this paper we consider the properties of the differential entropy rate of stochastic processes that have an autocorrelation function that decays as a power law. We show that power law decaying processes with similar autocorrelation and spectral density functions, Fractional Gaussian Noise and ARFIMA(0,d,0), have different entropic properties, particularly for negatively correlated parameterisations. Then we provide an equivalence between the mutual information between past and future and the differential excess entropy for stationary Gaussian processes, showing the finiteness of this quantity is the boundary between long and short range dependence. Finally, we analyse the convergence of the conditional entropy to the differential entropy rate and show that for short range dependence that the rate of convergence is of the order $O(n^{-1})$, but it is slower for long range dependent processes and depends on the Hurst parameter.


翻译:具有连续价值的随机过程特征的特性是一定的。 根据常规过程的直觉,例如Markov 进程,LRD 进程的许多特性的趋同率比预期的要慢。 这是否也适用于 entropy 率? 在本文中, 我们考虑具有以功率定律方式衰减的自动回声函数的随机切换率的差异性能的特性。 我们显示, 电法正在衰减过程, 具有类似的自动反光和光谱密度功能, Fractional Gaussian Noise 和 ARFIMA (0, d,0) 的趋同率比预期的慢。 特别是对于负相关参数的参数, LARDRD进程的许多特性不同。 然后我们提供过去和未来的相互信息的等同性, 而对于固定的高斯进程来说, 显示这种数量的有限性是长程和短程依赖性的边界。 最后, 我们分析有条件的英特罗比与差异摄氏率的趋同程度, 显示在短距离依赖性上, 它的趋同率取决于 US(n_-1)] 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月31日
Arxiv
0+阅读 · 2021年12月30日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员