Orthogonal/vector approximate message-passing (AMP) is a powerful message-passing (MP) algorithm for signal reconstruction in compressed sensing. This paper proves the convergence of Bayes-optimal orthogonal/vector AMP in the large system limit. The proof strategy is based on a novel long-memory (LM) MP approach: A first step is a construction of LM-MP that is guaranteed to converge systematically. A second step is a large-system analysis of LM-MP via an existing framework of state evolution. A third step is to prove the convergence of state evolution recursions for Bayes-optimal LM-MP via a new statistical interpretation of existing LM damping. The last is an exact reduction of the state evolution recursions for Bayes-optimal LM-MP to those for Bayes-optimal orthogonal/vector AMP. The convergence of the state evolution recursions for Bayes-optimal LM-MP implies that for Bayes-optimal orthogonal/vector AMP. Numerical simulations are presented to show the verification of state evolution results for damped orthogonal/vector AMP and a negative aspect of LM-MP in finite-sized systems.
翻译:orgonal/ victor message- passing (AMP) 是用于压缩感测信号重建的强大的信息传递算法(MP) 。 本文证明Bayes- 最佳正方/ 矢方 AMP 在大系统限制中的趋同。 校对策略的基础是新型的长模程( LM) MP 方法: 第一步是构建LM- MP, 保证系统趋同。 第二步是通过现有的国家演进框架对 LM- MP 进行大型系统分析。 第三步是通过对现有 LM 界划进行新的统计解释来证明Bayes- 最佳的 LM- MP 国家演进循环的趋同。 最后一步是精确减少Bayes- 最佳方 LM- MP 和 Bayes- 最佳或下方/ 矢量 AMP 国家演进循环的演进。 国家演进循环的趋同意味着, Bayes- oportominal/ AMP. 磁M 模型的底级演化结果将显示为MM 的州/ 级级级系统。