Meta-learning has enabled learning statistical models that can be quickly adapted to new prediction tasks. Motivated by use-cases in personalized federated learning, we study the often overlooked aspect of the modern meta-learning algorithms -- their data efficiency. To shed more light on which methods are more efficient, we use techniques from algorithmic stability to derive bounds on the transfer risk that have important practical implications, indicating how much supervision is needed and how it must be allocated for each method to attain the desired level of generalization. Further, we introduce a new simple framework for evaluating meta-learning methods under a limit on the available supervision, conduct an empirical study of MAML, Reptile, and Protonets, and demonstrate the differences in the behavior of these methods on few-shot and federated learning benchmarks. Finally, we propose active meta-learning, which incorporates active data selection into learning-to-learn, leading to better performance of all methods in the limited supervision regime.


翻译:元学习使学习的统计模型能够迅速适应新的预测任务。在个人化联合学习中的使用案例的推动下,我们研究了现代元学习算法经常被忽略的方面 -- -- 数据效率。为了更清楚地了解哪些方法更有效率,我们利用算法稳定性的技术来确定具有重要实际影响的转移风险的界限,指出需要多少监督,如何为每种方法分配监督,以达到理想的概括化水平。此外,我们引入了一个新的简单框架,在现有监督的限制下评价元学习方法,对MAML、Reptile和Protonets进行经验性研究,并展示这些方法在少发和被封化学习基准上的不同行为。最后,我们提出积极的元学习,将积极的数据选择纳入学习到学习,从而在有限的监督制度中更好地运用所有方法。

0
下载
关闭预览

相关内容

Reptile是元学习(Meta learning)最经典的几个算法之一,出自论文《Reptile: a Scalable Metalearning Algorithm》。除了对算法本身的贡献,论文还给出了Reptile和MAML算法的数学解释与分析。 原文地址:https://d4mucfpksywv.cloudfront.net/research-covers/reptile/reptile_update.pdf
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
Uber AI NeurIPS 2019《元学习meta-learning》教程,附92页PPT下载
专知会员服务
112+阅读 · 2019年12月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月25日
Arxiv
7+阅读 · 2020年3月1日
On Feature Normalization and Data Augmentation
Arxiv
14+阅读 · 2020年2月25日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
Uber AI NeurIPS 2019《元学习meta-learning》教程,附92页PPT下载
专知会员服务
112+阅读 · 2019年12月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年3月25日
Arxiv
7+阅读 · 2020年3月1日
On Feature Normalization and Data Augmentation
Arxiv
14+阅读 · 2020年2月25日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
7+阅读 · 2018年6月8日
Top
微信扫码咨询专知VIP会员