With rapid advancements in electronic gadgets, the security and privacy aspects of these devices are significant. For the design of secure systems, physical unclonable function (PUF) and true random number generator (TRNG) are critical hardware security primitives for security applications. This paper proposes novel implementations of PUF and TRNGs on the RRAM crossbar structure. Firstly, two techniques to implement the TRNG in the RRAM crossbar are presented based on write-back and 50% switching probability pulse. The randomness of the proposed TRNGs is evaluated using the NIST test suite. Next, an architecture to implement the PUF in the RRAM crossbar is presented. The initial entropy source for the PUF is used from TRNGs, and challenge-response pairs (CRPs) are collected. The proposed PUF exploits the device variations and sneak-path current to produce unique CRPs. We demonstrate, through extensive experiments, reliability of 100%, uniqueness of 47.78%, uniformity of 49.79%, and bit-aliasing of 48.57% without any post-processing techniques. Finally, the design is compared with the literature to evaluate its implementation efficiency, which is clearly found to be superior to the state-of-the-art.


翻译:随着电子装置的迅速发展,这些装置的安全和隐私方面是显著的。对于安全系统的设计而言,物理上无法调的功能(PUF)和真正的随机数字生成器(TRNG)是安全应用的关键硬件安全原始物。本文件建议在RRAM十字路口结构上实施PUF和TRNG的新做法。首先,在RRAM十字路口实施TRNG的两种技术基于写回和50%转换概率脉冲。拟议TRNG的随机性正在使用NIST测试套件进行评估。接下来,提出了在RRAM交叉栏中实施PUF的架构。PUF的初始灵敏源来自TRNGs,并收集了挑战响应配对。拟议的PUF利用设备变异和悄悄流生成独特的CRP。我们通过广泛的实验,展示了100%的可靠性、47.78%的独特性、49.79%的统一性以及48.57%的比喻。最后,在没有任何后处理技术的情况下,将PUF的初始源源源源源源源使用于TRNGS,并与高级应用相比,我们发现其设计与高效率。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员