Zero-inflated regression models have had wide application recently and have provenuseful in modeling data with many zeros. Zero-inflated Binomial (ZIB) regression model is an extension of the ordinary binomial distribution that takes into account the excess of zeros. In comparing the probit model to the logistic model, many authors believe that there is little theoretical justification in choosing one formulation over the other in most circumstances involving binary responses. The logit model is considered to be computationally simpler but it is based on a more restrictive assumption of error independence, although many other generalizations have dealt with that assumption as well. By contrast, the probit model assumes that random errors have a multivariate normal distribution. This assumption makes the probit model attractive because the normal distribution provides a good approximation to many other distributions. In this paper, we develop a maximum likelihood estimation procedure for the parameters of a zero-inflated Binomial regression model with probit link function for both component of the model. We establish the existency, consistency and asymptotic normality of the proposed estimator.
翻译:零膨胀的回归模型最近应用得非常广泛,在以许多零做成模型的数据模型方面证明很有用。 零膨胀的Binomial(ZIB)回归模型是普通二进制分布模型的延伸,它考虑到零的过剩。 在将原生模型与后勤模型进行比较时,许多作者认为,在多数涉及二进制反应的情况下,选择一种配方比另一种配方在理论上没有多少理论上的理由。 逻辑模型被认为在计算上比较简单,但它基于一个更加严格的误差独立的假设,尽管其他许多一般性假设也处理了这一假设。相比之下,Probit模型假定随机错误具有多变的正常分布。这个假设使原生型模型具有吸引力,因为正常分布为许多其他分布提供了良好的近似值。 在本文中,我们为该模型的两个组成部分都制定了一个带有推位联系功能的零膨胀二进二进制回归模型参数的最大可能性估计程序。 我们建立了拟议估测算器的存在、一致性和自时正常性。