In time entanglement-based quantum key distribution (QKD), Alice and Bob extract the raw key bits from the (identical) arrival times of entangled photon pairs by time-binning. Each of them individually discretizes time into bins and groups them into frames. They retain only the frames with a single occupied bin. Thus, Alice and Bob can use the position of the occupied bin within a frame to generate random key bits, as in PPM modulation. Because of entanglement, their occupied bins and their keys should be identical. However, practical photon detectors suffer from time jitter errors. These errors cause discrepancies between Alice's and Bob's keys. Alice sends information to Bob through the public channel to reconcile the keys. The amount of information determines the secret key rate. This paper computes the secret key rates possible with detector jitter errors and constructs codes for information reconciliation to approach these rates.
翻译:在基于时间缠绕的量子键分布(QKD)中,Alice和Bob从(相同)缠绕的光子配对的(同)到达时间中提取原始键位。每张光子配对时,它们各自将时间分解到文件夹中,将其分组到框中。它们只保留使用单个占用的垃圾桶的框框。因此,Alice和Bob可以在一个框内使用被占用的垃圾箱的位置生成随机键位,如 PPPMM 调制。由于缠绕,它们所占的垃圾箱和钥匙应该相同。然而,实用的光子探测器会因时间错乱而发生差。这些错误导致Alice和Bob的钥匙之间的差异。Alice通过公共频道向Bob发送信息以调和密钥。信息量决定了秘密密钥率。本文将可能的秘密密钥率与探测器错出密钥率进行计算,并构建信息调算代码以接近这些速率。