In the pairwise weighted spanner problem, the input consists of an $n$-vertex-directed graph, where each edge is assigned a cost and a length. Given $k$ vertex pairs and a distance constraint for each pair, the goal is to find a minimum-cost subgraph in which the distance constraints are satisfied. This formulation captures many well-studied connectivity problems, including spanners, distance preservers, and Steiner forests. In the offline setting, we show: 1. An $\tilde{O}(n^{4/5 + \epsilon})$-approximation algorithm for pairwise weighted spanners. When the edges have unit costs and lengths, the best previous algorithm gives an $\tilde{O}(n^{3/5 + \epsilon})$-approximation, due to Chlamt\'a\v{c}, Dinitz, Kortsarz, and Laekhanukit (TALG, 2020). 2. An $\tilde{O}(n^{1/2+\epsilon})$-approximation algorithm for all-pair weighted distance preservers. When the edges have unit costs and arbitrary lengths, the best previous algorithm gives an $\tilde{O}(n^{1/2})$-approximation for all-pair spanners, due to Berman, Bhattacharyya, Makarychev, Raskhodnikova, and Yaroslavtsev (Information and Computation, 2013). In the online setting, we show: 1. An $\tilde{O}(k^{1/2 + \epsilon})$-competitive algorithm for pairwise weighted spanners. The state-of-the-art results are $\tilde{O}(n^{4/5})$-competitive when edges have unit costs and arbitrary lengths, and $\min\{\tilde{O}(k^{1/2 + \epsilon}), \tilde{O}(n^{2/3 + \epsilon})\}$-competitive when edges have unit costs and lengths, due to Grigorescu, Lin, and Quanrud (APPROX, 2021). 2. An $\tilde{O}(k^{\epsilon})$-competitive algorithm for single-source weighted spanners. Without distance constraints, this problem is equivalent to the directed Steiner tree problem. The best previous algorithm for online directed Steiner trees is $\tilde{O}(k^{\epsilon})$-competitive, due to Chakrabarty, Ene, Krishnaswamy, and Panigrahi (SICOMP, 2018).
翻译:暂无翻译