Enforcing orthogonality in neural networks is an antidote for gradient vanishing/exploding problems, sensitivity by adversarial perturbation, and bounding generalization errors. However, many previous approaches are heuristic, and the orthogonality of convolutional layers is not systematically studied: some of these designs are not exactly orthogonal, while others only consider standard convolutional layers and propose specific classes of their realizations. To address this problem, we propose a theoretical framework for orthogonal convolutional layers, which establishes the equivalence between various orthogonal convolutional layers in the spatial domain and the paraunitary systems in the spectral domain. Since there exists a complete spectral factorization of paraunitary systems, any orthogonal convolution layer can be parameterized as convolutions of spatial filters. Our framework endows high expressive power to various convolutional layers while maintaining their exact orthogonality. Furthermore, our layers are memory and computationally efficient for deep networks compared to previous designs. Our versatile framework, for the first time, enables the study of architecture designs for deep orthogonal networks, such as choices of skip connection, initialization, stride, and dilation. Consequently, we scale up orthogonal networks to deep architectures, including ResNet, WideResNet, and ShuffleNet, substantially increasing the performance over the traditional shallow orthogonal networks.


翻译:在神经网络中强化或测量神经网络,是梯度消失/爆炸问题的解药,是对抗性扰动的敏感度,是约束性一般化错误的灵敏度。然而,许多先前的方法都是超光谱的,没有系统地研究卷变层的正反光度:其中一些设计并不完全垂直,而另一些设计只是考虑标准的卷变层,并提议其实现的具体类别。为了解决这个问题,我们提议了一个交错层的理论框架,以建立空间域中各种或横向共振层与光谱域中传统网络系统之间的等值。由于存在对准统一系统的完整光谱化,任何或交错的层都可以作为空间过滤器的卷变的参数化。我们的框架在保持精确或分层特性的同时,对各种卷变层层具有高度的表达力。此外,我们的层与先前的设计相比,具有记忆和计算效率。我们的多功能化框架,第一次使得对深度网络进行结构设计的研究,包括深度、深层或深层次网络的构造,从而可以对深度、深层或深层次网络进行结构的研究,从而进行结构的升级、深层次、深层或深层次的连接。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月18日
Arxiv
0+阅读 · 2021年8月17日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
3+阅读 · 2018年2月11日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员