Due to its potential for a universal interface over both data and text, data-to-text generation is becoming increasingly popular recently. However, few previous work has focused on its application to downstream tasks, e.g. using the converted data for grounding or reasoning. In this work, we aim to bridge this gap and use the data-to-text method as a means for encoding structured knowledge for knowledge-intensive applications, i.e. open-domain question answering (QA). Specifically, we propose a verbalizer-retriever-reader framework for open-domain QA over data and text where verbalized tables from Wikipedia and triples from Wikidata are used as augmented knowledge sources. We show that our Unified Data and Text QA, UDT-QA, can effectively benefit from the expanded knowledge index, leading to large gains over text-only baselines. Notably, our approach sets the single-model state-of-the-art on Natural Questions. Furthermore, our analyses indicate that verbalized knowledge is preferred for answer reasoning for both adapted and hot-swap settings.


翻译:最近,由于数据与文本具有普遍界面的潜力,数据与文本的生成正在变得日益普及。然而,以前的工作很少侧重于将其应用于下游任务,例如利用转换的数据进行定位或推理。在这项工作中,我们的目标是缩小这一差距,并使用数据与文本的方法,作为知识密集型应用结构化知识的编码手段,即开放式问题解答(QA)。具体地说,我们提议为数据与文本的开放式多盘QA提供口头-检索读取框架,将维基百科和维基数据三倍的口头表格用作扩大的知识来源。我们表明,我们的统一数据和文本QA,UDT-QA, 能够从扩展的知识指数中有效地受益,从而在仅文本基线上获得巨大收益。值得注意的是,我们的方法设置了单一模型的自然问题状态。此外,我们的分析表明,在对适应和热浪环境中的答案推理中,口述知识更受青睐。

0
下载
关闭预览

相关内容

自动问答(Question Answering, QA)是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务。不同于现有搜索引擎,问答系统是信息服务的一种高级形式,系统返回用户的不再是基于关键词匹配排序的文档列表,而是精准的自然语言答案。近年来,随着人工智能的飞速发展,自动问答已经成为倍受关注且发展前景广泛的研究方向。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
知识驱动的视觉知识学习,以VQA视觉问答为例,31页ppt
专知会员服务
35+阅读 · 2020年9月25日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【文本匹配】Question Answering论文
深度学习自然语言处理
8+阅读 · 2020年4月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
Arxiv
15+阅读 · 2021年11月19日
Generating Rationales in Visual Question Answering
Arxiv
5+阅读 · 2020年4月4日
Arxiv
9+阅读 · 2016年10月27日
VIP会员
相关VIP内容
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
知识驱动的视觉知识学习,以VQA视觉问答为例,31页ppt
专知会员服务
35+阅读 · 2020年9月25日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
【文本匹配】Question Answering论文
深度学习自然语言处理
8+阅读 · 2020年4月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
Top
微信扫码咨询专知VIP会员