Learning to understand and predict future motions or behaviors for agents like humans and robots are critical to various autonomous platforms, such as behavior analysis, robot navigation, and self-driving cars. Intrinsic factors such as agents' diversified personalities and decision-making styles bring rich and diverse changes and multi-modal characteristics to their future plannings. Besides, the extrinsic interactive factors have also brought rich and varied changes to their trajectories. Previous methods mostly treat trajectories as time sequences, and reach great prediction performance. In this work, we try to focus on agents' trajectories in another view, i.e., the Fourier spectrums, to explore their future behavior rules in a novel hierarchical way. We propose the Transformer-based V model, which concatenates two continuous keypoints estimation and spectrum interpolation sub-networks, to model and predict agents' trajectories with spectrums in the keypoints and interactions levels respectively. Experimental results show that V outperforms most of current state-of-the-art methods on ETH-UCY and SDD trajectories dataset for about 15\% quantitative improvements, and performs better qualitative results.
翻译:学会了解和预测人类和机器人等代理人的未来动作或行为对于行为分析、机器人导航和自驾驶汽车等各种自主平台至关重要。 代理人的多样化个性和决策风格等内在因素为其未来的规划带来了丰富多样的变化和多模式特征。 此外, 外表互动因素也给其轨迹带来了丰富多样的变化。 以往的方法大多将轨迹作为时间序列处理, 并达到巨大的预测性能。 在这项工作中, 我们试图侧重于另一种观点中的代理人轨迹, 即四倍频谱, 以新的等级方式探索其未来的行为规则。 我们提出了基于变换器的V模型, 它将两个连续的关键点估计和频谱间插子网络相匹配, 以模型和预测代理人的轨迹与关键点和互动水平的频谱。 实验结果显示, 在埃克斯- CUC 和 SDDDtral 的量化结果上, 15 和 质量 质量 和质量 度结果的演化, 15 质量 和 质量 和 质量 数据结果的演化中, V 最优于目前状态的状态方法。