Let $h(d,2)$ denote the smallest integer such that any finite collection of axis parallel boxes in $\mathbb{R}^d$ is two-pierceable if and only if every $h(d,2)$ many boxes from the collection is two-pierceable. Danzer and Gr\"{u}nbaum (1982) proved that $h(d,2)$ equals $3d$ for odd $d$ and $(3d-1)$ for even $d$. In this short note paper, we have given an optimal colorful generalization of the above result, and using it derived a new fractional Helly Theorem for two-piercing boxes in $\mathbb{R}^{d}$. We have also shown that using our fractional Helly theorem and following the same techniques used by Chakraborty et al. (2018) we can design a constant query algorithm for testing if a set of points is $(2,G)$-clusterable, where $G$ is an axis parallel box in $\mathbb{R}^d$.
翻译:Leth(d), 2美元表示最小整数, 使以 $mathbb{R ⁇ d$ 中轴平行框的任何有限收藏, 只有在收藏中的每(d), 2美元中, 多盒是双倍的, 并且只有每(d, 2)美元是双倍的, 才会有两种可忽略的。 Danzer 和 Gr\\"{u}nbum (1982) 证明$h(d, 2) 美元等于奇数$的3d美元, 美元等于美元( 3d-1) 美元。 在这份简短的注解纸中, 我们给出了上述结果的最佳彩色概观, 并用它为 $\\ mathb{R ⁇ d} 美元中的双折叠框生成了新的分数 Helly Theorem 。 我们还表明, 使用我们的分数 Helly thereum 和Chakraborty et et al. (2018) 使用的相同技术, 我们可以设计一个常数查询算法, 如果一组点是 $( 2, G) $_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ $, $, $。